
Neural Networks Control of a Magnetic Levitation System- Final Report - Prof. Chaïban NASR. Page 1/21

EUROPEAN OFFICE OF AEROSPACE RESEARCH AND DEVELOPMENT

Contract F61775-00-WE068

12 September, 2000

PROGRESS REPORT,

17 April, 2001

NEURAL NETWORKS CONTROL OF A MAGNETIC LEVITATION
SYSTEM

Principal Investigator: Prof. Chaïban NASR

Lebanese University - Faculty of Engineering, Section I
Dept. of Electrical and Electronic Engineering
P.O. Box No 7 - Zgharta - North Lebanon
LEBANON

Phone: (961) 3 369245
Fax: (961) 6 385089
E-mail: chnasr@ul.edu.lb

1-INTRODUCTION:

Perhaps the most innovative technical development over the last ten years
in the field of control has been the introduction of artificial neural networks
(ANN) methods for identification, modeling and control [1,2]. The basic
concept of artificial neural nets stems from the idea of modeling individual brain
cells/neurons in a fairly simple way, and then connecting these models in a
highly parallel fashion to offer a complex processing mechanism which exhibits
learning in terms of its overall nonlinear characteristics. Actual brain cells are
not of one particular form. They are not all identical, whereas at present
artificial neural networks tend to consist of one type of neuron. Further, the
overall make up of a brain, in terms of connectivity and structure, is highly
complex and not well understood, whereas artificial neural networks are
generally well structured and simply coupled, thereby enabling the possibility of
understanding their mode of operation.

In terms of a control systems environment, the majority of practical
controllers actually in use are both simple and linear, and are directed towards
the control of a plant which is either reasonably linear or at least linearisable.
However, it is sufficient to state that a neural network is usually a complex
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nonlinear mapping tool, and the use of such a device on relatively simple linear
problems makes very little sense at all, being a case of over-skill [3]. The fact
that neural networks have the capability of dealing with complex non-linearity
in a fairly general way is an exciting feature. By their nature, nonlinear systems
are non-uniform and invariably require custom designed control schemes to deal
with individual characteristics. No general theory deals comprehensively with
the wide range of nonlinear systems encountered, so an approach, namely,
neural networks that can offer a fairly broad coverage are therefore extremely
attractive. By viewing neural networks with control applications clearly in mind,
a number of observations can be made [4], the first of these being perhaps the
most significant:

(i) Neural networks can flexibly and arbitrarily map nonlinear functions.
Such networks are best suited for the control of nonlinear systems.

(ii) Neural networks are particularly well suited to multivariable applications
due to their ability to map interactions and cross-couplings readily whilst
incorporating many inputs and outputs.

(iii) Networks can either be trained off-line and subsequently employed either
on or off-line, or they can be trained on-line as part of an adaptive control
scheme or simply a real-time system identifier. Understanding of a
network’s mode of operation within an adaptive controller is, at the
present time, extremely limited.

(iv) Neural networks are inherently parallel processing devices which exhibit
to an extent, at least, fault tolerant characteristics.
 
The purpose of the work is a simulating investigation of the use of

artificial neural networks (ANN) in conjunction of PID controllers in control of
non-contacting active magnetic bearings (AMB). The objective of this technique
is to reduce the effect of the unbalance on the rotor displacement without the
estimating perturbation. Another purpose will be the application of this
knowledge for the conception of different types of architectures of the ANN in
closed-loop systems.

2 - ACTIVE MAGNETIC BEARING (AMB):

2-1 - Background:

Active magnetic bearing are used to support radial and thrust loads in
precision rotating machinery or to levitate linear motion devices. Since there can
be no mechanical contact with active magnetic bearing, the speed of supported
components is not limited. Due to no friction with active magnetic bearing, only
the actuators, sensors, and servo system used limit motion resolution of the
supported object. Thus active magnetic bearings can be used in virtually any
environment as long as the electromagnetic coils are well protected, e.g., they
can be operated in the air with temperatures ranging from -235oC to 450oC [5].
Active magnetic bearing actuators can be used for improving the dynamic
behavior of the supported load, however, they are open loop unstable and
require a closed-loop control system for stability [5], [6]. As active magnetic
bearings are used to support rotors, the three dimensional rotor dynamics and
the electromagnetic subsystems are severely coupled, and the whole active
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magnetic bearing system is highly nonlinear and complex. The problems of
control design for an active magnetic bearing are thus challenging and play a
key role in the design of machines with nanometer accuracy.

Jackson and Destombes [7] considered the usual efficient type of active
magnetic bearings in the attraction mode. Salm and Schweizer [8] considered
the modeling and control of active magnetic bearings with a flexible rotor. The
flexibility effect due to eccentricity between the center of mass and geometric
center is critical at high operational speeds. Matsumura and Yashimoto [9]
considered the modeling and control of a horizontal shaft with active magnetic
bearings. They suggested a linear quadratic regulation (LQR) control with
incorporated integral control. Matsumura et al. [10] proposed an axial thrust and
radial control design methodology, and experimental results are shown to
validate the effectiveness of the control strategy under wide operation ranges.
Youcef-Toumi and Reddy [11] proposed a model with actuator dynamics and
rotor flexibility for active magnetic bearings, and experimental results using
time delay control show that the suggested approach can obtain good
disturbance rejection. The above approaches to the control of magnetic bearings
are all based on the linear approximation models, thus the gyroscopic effects
among the rotational degrees of freedom and the mutual induction between the
electromagnets are not fully considered in the control design.

2-2 - Modeling of an Active Magnetic Bearing:

The device used for simulations is a dynamic modeling of a rigid rotor.
This rotor is suspended against gravity by an active magnetic bearing and
centered by two active magnetic bearings. Active magnetic bearings with air
gaps are used for generating the required radial and axial control force
components to fully regulating the floating rotor as shown in figure 1.

Fig. 1: - Schematic representation of a rotor with Active Magnetic Bearings.
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A. Five Mechanical Degree-of-Freedom:

Fig. 2: - Schematic representation of a rotor in the (x, z) plane.

Consider the simplified model of an active magnetic bearing system
shown in figure 2. It consists of two planes of control with one active axial
bearing. For simplicity, the rotor is assumed rigid and its center of mass and
geometric center are consistent, i.e., with no eccentricity. The five mechanical
Degree-Of-Freedom considered will be measured by the sensors, they are:

- x   which represents the geometric center O  of the rotor.
- y1 and z1  (respectively y2 and z2) measured in the control plane 1

(respectively in the control plane 2).
The parameter lc represents the distance between the radial position sensor and
the geometric center. The parameter dca represents the distance between the
sensor and the corresponding actuator.
Another Degree-Of-Freedom may be the rotation angle in the x direction. But
this variable can be controlled independently.

B. Modeling of the (y, z) plane control:

A plane system is the representation of a mobile in the form of a disc
where the translation position is controlled by four actuators placed in the plane
control described in the figure 3. This mobile cannot rotate around the y- and z-
axis; it can only rotate around the x-axis with a certain velocity.

The coordinates of the center O in the fixed reference frame attached to
the stator are (x, y, z), and the coordinates of the geometric center G in the
moving frame attached to the rotor (y', z') are (0, δy, δz). This moving frame
rotate with an angle φ with respect to the frame (y, z) and parallel to the fixed
frame attached to the stator.
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Fig. 3: - Schematic representation of the plane control (y, z).

By applying the Lagrange's equations, the dynamic equation is represented as follow:

FB
q

qqqCqqD ⋅=
∂
∂ℜ

+⋅+⋅
&

&&&& ),()(

Where D, C, and B are matrices, and F is the input matrix.

The mechanical energy of the system is given by the equation:

( )22

2
1

φ&xGm IVmT +=

And the electrical energy of the system is given by the equation:












+
+

−
+

+
+

−
=

ze
i

ze
i

ye
i

ye
i

T zmzpymyp
e

0

2

0

2

0

2

0

2

2
1 λλλλ

By recombining the expressions of the mechanical and electrical energy and by
considering δz=0, we obtain:
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and for Te :
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The expression of the total energy will be condensed as follows:
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On the other hand, the expression of the matrix C is given by the relation [12]:
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We define Py and Pz the gravity forces. By defining Eyp, Eym, Ezp, Ezm the applied
voltages for the four actuators, the global system can be modeled by:
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C. Modeling the five Degree-Of-Freedom:

By assuming that the rotor is rigid and its center of mass and geometric
center are consistent, we have δx = δy = δz = 0. We consider also that the
system is symmetric in the y- and z-plane, we have Iy = Iz. We considered also
that the distance dca is equal to zero (the distance between the actuator and the
associated sensor is equal to zero).

Two types of equations will represent the simulated model:
- Six mechanical equations relating the expressions of the five positions (x, y1,

z1,  y2, z2) and of the angle of rotation φ of the system to the different
parameters of the system.

- Ten electrical equations relating the expressions of the ten currents (ixp,  ixm,
iy1p, iy1m, iz1p, iz1m, iy2p, iy2m, iz2p, iz2m) to the expressions of the mechanical
forces applied to the system. For every position, we have two actuators: one
in the positive direction (suffix p) and the other in the negative direction
(suffix m).

2-3 - Control of the Active Magnetic Bearing:

Before introducing the neural network controllers, we have to simulate a
control technique based on linearized PID controllers. This phase is important to
study the effect of using new techniques based on neural networks controllers.

The proposed control technique is based on a cascade structure as shown
in figure 4. We begin by deciding of the kinematics of the system followed by
the dynamic equations that will determine the different forces applied. From the
forces applied, we determine the expressions of the currents that must control
the actuators.
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Fig. 4: - Cascade Structure of the control technique.

The equations relating the expressions of the desired forces to the
expressions of the desired currents are given by:
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We recognize from this system of equations that every relation consists of
two unknown currents of the same axe of control. For that, we suppose that one
current is fixed and the other is to be calculated. If the desired force is positive
(respectively negative), the current related to the actuator that create a negative
(respectively positive) acceleration will be fixed as a parameter. The
commutation of the current is perfect, which means that only one actuator is
functioning in a given direction. This will lead to the fact that, in every
direction, the current fixed as a parameter will be equal to zero.

On the other hand, the electromechanical equations representing the five
positions and the velocity of the rigid rotor in function of the different currents
and of the dynamic of the system are given by:

Desired Currents
(Electromagnetism)

Desired Forces
(Dynamics)

Desired acceleration
(Kinematics)
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These equations (positions and currents) will lead to a closed loop system
represented in figure 5.

Fig. 5: - Schematic representation of the linearized control technique.

3 - MULTI-LAYER PERCEPTRONS METHOD (MLP):

3-1 - Introduction:

Multi-layer perceptrons [13] provide one arrangement for neural network
implementation, by means of nonlinear relationships between, firstly, the
network inputs to outputs and, secondly, the network parameters to outputs.

The five
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Such a network consists of a number of neuron layers, n, linking its input
vector, u, to its output vector, y, by means of the equation:

y = ϕn(Wnϕn-1(Wn-1…ϕ1(W1u + b1) +…+ bn-1) + bn)

in which Wi is the weight matrix associated with the layer, ϕi is a
nonlinear operator associated with the ith layer and bi indicate threshold or bias
values associated with each node in the ith layer. The function ϕi is a sigmoid
function for all n.

It is known in reality that real neurons, located in different areas of the
nervous system, have different modes of behavior [14] ranging from Gaussian-
like for visual needs to sigmoid for ocular motor needs. It is generally the case
for artificial neural networks, however, that only one type of non-linearity is
employed for a particular network, this linking in closely with the fact that each
network is only employed for one particular task.

u1 ∑ ϕ1 ∑ ϕ2 y1

u2 ∑ ϕ1 ∑ ϕ2 y2

um ∑ ϕ1 ∑ ϕ2 ym

Fig.6: - A two-layer multi-layer perceptron.

Figure 6 shows a fully connected network in that all of the neuron outputs
in one layer of the network are connected as inputs to the next layer. This is
normal practice: however, it is quite possible for part-connectivity to be realized
by connecting a group of outputs to only specific input. By this means sub-
models can be formed within the overall MLP, and these can be particularly
useful where a specific system characteristic is to be dealt with or inputs/outputs
from the system can be categorized into certain types.

Whatever the network connectivity, key questions in the use of MLPs are
how many layers there should be and how many neurons there should be in each
layer. Once these structural features of the network have been selected, it
remains for the adjustable weights to be settled on such that the network is
completely specified in terms of its functionality.

3-2 - Dynamic back propagation learning:

By far the most popular method employed for weight training in MLP
neural networks is called back propagation [15]. In the standard feed-forward
MLP network, back propagation solves the problem of missing information to
the hidden layers, neither the input to nor the reference signals for the hidden
layers are known. This solving problem is obtained by taking the inputs to the
hidden layers as being the inputs to the first layers propagated through the
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network. The reference signals for the hidden layers are then obtained by error
back propagation through the network. This is realized by obtaining the partial
derivative of the squared error with respect to the parameters.

It is worth pointing out that the back propagation algorithm has also been
used for weight learning in feedback neural networks [16,17], these being
networks in which the network structure incorporates feedback, whereby the
output of every neuron is fed back, in weighted form, to the input of every
neuron. The architecture of such a network is inherently dynamic and realizes
powerful capabilities due to its complexity.

Consider, as a starting point, a single neuron with output yi; then

)xexp(1

)ixexp(1
)x(y

i
ii −+

−−
=ϕ=

In which:

∑
=

+=
m

1i
0jiji wuwx

In this expression w0 is a bias term. If it is assumed that at an instant in
time, for an input ui the output yi should be equal to the desired output yd, then
the squared error of the output signal is given by:
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and it is desired to minimize Ei by means of a suitable/best choice of the
weighting coefficients wij .

Consider the problem of minimizing the scalar error function E(W), where
W is a vector of weights to be adjusted by means of an interactive procedure
generating a number of  search points, W(k), such that:

W(k+1) = α(k)W(k) + η(k)d(k)

In this relation an initial set of weightings W(0) is made through prior
knowledge, by a reasoned guess or even relatively randomly. The term
α(k)W(k) represent a momentum term and α(k) is usually a positive number
called the momentum constant. The term d(k) indicates the search direction,
whereas η(k) indicates the length of search step or the amount of learning to be
carried out.

In this way, the weights associated with one neuron can be adjusted in
order to minimize the squared error. The approach can then be extended in order
to adjust all of the weights in the MLP network. So, overall, a set of
input/desired output data values is used to train the entire network, the input set
also realizing a corresponding set of network weights such that the error
between the desired output signals and the actual network output signals is
minimized in terms of the average overall learning points. The back propagation
algorithm employs the steepest-descent method to arrive at a minimum of the
mean squared error function. For one specific data pair, the error squared can be
written as:
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where m neurons are assumed to be present, and yik is the ith neuron’s kth
output value.

The global error is then found by minimizing Ek over all the data set. If
the number of data values that are present is N, then we have:

∑
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This error function can then be minimized in batch mode or recursively in
an on-line manner.

The network is now fully trained on the data presented and can be
employed with any further data, although it may be desirable to present the data
again cyclically until the overall error falls below a previously defined
minimum value, i.e. until the weights converge. An important feature then
emerges in that the MLP network has the ability to generalize when it is
presented with new data not previously dealt with.

3-3 - Proposed Neural-Network Controller:

Our goal is to find a method that will not modify the basic structure of the
controlled process. So, with the standard control technique, we add an artificial
neural network controller (fig 7) that anticipates the desired input of the closed
loop system consisting of a PID controller in cascade with the system plant. In
this structure, the neural network controller is used to modify the desired
trajectory instead of generating a compensating torque. The five output
positions are represented by vector sq

r
, and the desired positions by vector dq

r
.

The vector φ
r

 represents the output of the neural network controller. This
control loop will be condensed and is represented by figure 8:

System
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Fig. 7: Neural network control loop
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The vector V
r

represents the output of the PID regulator.
The vector e

r
represents the error after the insertion of the ANN controller.

The vector ε
r

 represents the error before insertion of the ANN controller.
So, the error vectorε

r
 between the actual output vector sq

r
and the desired input

vector dq
r

will be written as:

sd qq
rrr

−=ε
The vector e

r
controlling the PID bloc and its derivative can be written as

follows:

φεφ

φεφ
&r&r&r&r&r&r

rrrrrr

+=+−=

+=+−=

sd

sd

qqe

qqe

The output vector V
r

of the PID bloc controlling the plant model can be written
as follows:

∫ φ⋅+∫ ε⋅+φ⋅+ε⋅+φ⋅+ε⋅=∫⋅++⋅= dtkidtkikvkvkpkpdtekie.kvekpV
rr&r&rrrr&rrr

This equation can be written in the following manner:

1VdtkikvkpdtkikvkpV
rr&rrr&rrr

=++=−−− ∫∫ εεεφφφ

So, the main objective is to minimize the vector 1V
r

 that yields in minimizing the
vector ε

r
. This procedure will yield the output vector to track the desired input

vector.

Remark:
If we consider that the model is characterized by a function f connecting the
input and the output vectors, we can write:
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In term of this consideration, the equation describing the vector 1V
r

 will be
written as follows:
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Fig. 8: Condensed neural network control loop
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From this equation we recognize that the artificial neural network used in the
closed loop system has to identify f-1 indirectly. (When 1V

r
 tends to zero)

Back-propagation algorithm:

At iteration n, the error to minimize is:

( ) ( ) ( )nVnVn T
112

1 rr
⋅=ξ

with

∫∫ ++=−−−= dtkikvkpdtkikvkpVV εεεφφφ
r&rrr&rrrr

1

For neuron j of the output layer, this equation can be written as follows:

( ) ( ) ( ) ( ) ( )∫−−−= dtnkinkvnkpnVnV jjjjj φφφ &
1

Where:
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C being the set of the neurons of the output layer.
And the average error will be equal to:

( ) )n(
N
1

n
N

1n
av ∑ ξ=ξ

=

5 - NUMERICAL SIMULATION:

A number of neural network controllers have been trained using the back-
propagation technique based on the first order algorithm with different learning
rates and different momentum terms. Figure 9 shows an optimum learning rate
equal to 0.08 and an optimum momentum term equal to 0.1. The activation
function of the neuron is a sigmoide that uses the hyperbolic tangent with its
parameter equal to 107.  Figure 10 shows that the (5-9-5) multi-layer perceptron
represents the optimal architecture with minimum average error equal to 0.1032.

Figures 11,12 and 13 show the desired input x(t), y1(t), y2(t), z1(t), z2(t) (red
line) corresponding to the five axes of control of the AMB, and the output
responses  (blue line) obtained without using the neural network controller.

Figures 14,15 and 16 show the desired input x(t), y1(t), y2(t), z1(t), z2(t) (red
line) corresponding to the five axes of control of the AMB, and the output
responses  (blue line) obtained during the learning process of the closed loop
control combined with the neural network controller. We notice the complete
accuracy of the output variables in following the desired input variables during
the learning process.

Figures 17, 18 and 19 show the desired input x(t), y1(t), y2(t), z1(t), z2(t) (red
line) corresponding to the five axes of control of the AMB, and the output
responses  (blue line) obtained after the learning process of the closed loop
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control combined with the neural network controller. We notice that the output
variables of the system have changed from the ones obtained during the learning
process, but they have better performances in response time and in precision
compared to the control through the non-linear loop.

6 - COMMENTS AND PERSPCTIVES:

Applications in new technologies such as robotics, manufacturing, space
technology, and medical instrumentation, as well as those in older technologies
such as process control and aircraft control, are creating a wide spectrum of
control problems in which non-linearity, uncertainties, and complexity play a
major role. For the solution of many of these problems techniques based on
ANN’s are beginning to complement conventional control techniques [18], and
in some cases they are emerging as the only viable alternatives. From a control
theoretic point of view, ANN’s may be considered as tractable parameterized
families of nonlinear maps. As such they have found wide application in pattern
recognition problems, which require nonlinear decision surfaces. With the
introduction of dynamics and feedback, the scope of such networks as
identifiers and controllers in nonlinear dynamical systems has increased
significantly.

Our works aim to study the application of artificial neural networks
(multi-layer perceptrons, MLPs) for the control of a Magnetic Levitation
System by using the dynamic back-propagation method for the adjustment of
parameters. The theoretical study of all the system and the simulated model are
terminated. We finished the implementation of the different algorithms. We
finished the simulation of the system in the linearized technique and the
implementation of a neural network controller associated with a PID controller
without making major modifications in the control of the process.
The results obtained were compared. Good results are obtained because this
technique demonstrates the feasibility of controlling the AMB by using a neural
network controller. Also the performances in precision and in response time are
very important: it eliminates the over-shoot from the x(t) and diminish the
response time of the five position variables.
A difference appears between the response of the system during the learning
process and the final implementation of the algorithm. While complete
concordance exits during the learning process, a different response appears after
the learning process. This difference is due in particular to the number of trials
that we have used during the learning process and to the technique used in the
convergence of the neural network algorithms. We have used a first order
algorithm which is the descent gradient convergence method in updating the
weights of the network.

Our target from this work will be the real-time process (implementation
on DSP of the neural networks controller and studying the behavior of all the
process).
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RESULTS OF THE SIMULATION
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Fig. 9: Average error avξ  function of the parameters α and η
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Fig.10: Average error avξ  times the number of the hidden neurons in the MLP

Fig. 11: Desired input x(t) (red line) and output response (blue line) without NN
controller

Fig. 12: Desired input y1(t) (red line) and output response (blue line) without NN
controller
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Fig. 13: Desired input x(t), y1(t), y2(t), z1(t), z2(t) (red line) and output responses
(blue line) without NN controller.

Fig. 14: Desired input x(t) (red line) and output response (blue line) during the
learning process with NN controller.

Fig. 15: Desired input y1(t) (red line) and output response (blue line) during the
learning process with NN controller (off-line).

10-110-1



Neural Networks Control of a Magnetic Levitation System- Final Report - Prof. Chaïban NASR. Page 20/21

Fig. 16: Desired input x(t), y1(t), y2(t), z1(t), z2(t) (red line) and output responses
(blue line) during the learning process with NN controller (off-line)

Fig. 17: Output x(t) (red line) with NN controller (on-line) and output x(t) (blue line)
without NN controller
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Fig. 18: Output y1(t) (red line) with NN controller (on-line) and output y1(t) (blue
line) without NN controller

Fig. 19: Output x(t), y1(t), y2(t), z1(t), z2(t) (red line) with NN controller (on-line) and
output x(t), y1(t), y2(t), z1(t), z2(t) (blue line) without NN controller
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